On some generalized $q$-Eulerian polynomials
Abstract: The $(q,r)$-Eulerian polynomials are the $(\maj-$$\exc,\fix,\exc)$ enumerative polynomials of permutations. Using Shareshian and Wachs' exponential generating function of these Eulerian polynomials, Chung and Graham proved two symmetrical $q$-Eulerian identities and asked for bijective proofs. We provide such proofs using Foata and Han's three-variable statistic $(\inv-$$\lec,\pix,\lec)$. We also prove a new recurrence formula for the $(q,r)$-Eulerian polynomials and study a $q$-analogue of Chung and Graham's restricted descent polynomials. In particular, we obtain a generalized symmetrical identity for these restricted $q$-Eulerian polynomials with a combinatorial proof.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.