Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computational aspects of Bayesian spectral density estimation

Published 19 Nov 2012 in stat.CO and stat.ME | (1211.4483v1)

Abstract: Gaussian time-series models are often specified through their spectral density. Such models present several computational challenges, in particular because of the non-sparse nature of the covariance matrix. We derive a fast approximation of the likelihood for such models. We propose to sample from the approximate posterior (that is, the prior times the approximate likelihood), and then to recover the exact posterior through importance sampling. We show that the variance of the importance sampling weights vanishes as the sample size goes to infinity. We explain why the approximate posterior may typically multi-modal, and we derive a Sequential Monte Carlo sampler based on an annealing sequence in order to sample from that target distribution. Performance of the overall approach is evaluated on simulated and real datasets. In addition, for one real world dataset, we provide some numerical evidence that a Bayesian approach to semi-parametric estimation of spectral density may provide more reasonable results than its Frequentist counter-parts.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.