Variable projection for affinely structured low-rank approximation in weighted 2-norms (1211.3938v3)
Abstract: The structured low-rank approximation problem for general affine structures, weighted 2-norms and fixed elements is considered. The variable projection principle is used to reduce the dimensionality of the optimization problem. Algorithms for evaluation of the cost function, the gradient and an approximation of the Hessian are developed. For $m \times n$ mosaic Hankel matrices the algorithms have complexity $O(m2 n)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.