Symmetries and stabilization for sheaves of vanishing cycles (1211.3259v4)
Abstract: Let $U$ be a smooth $\mathbb C$-scheme, $f:U\to\mathbb A1$ a regular function, and $X=$Crit$(f)$ the critical locus, as a $\mathbb C$-subscheme of $U$. Then one can define the "perverse sheaf of vanishing cycles" $PV_{U,f}$, a perverse sheaf on $X$. This paper proves four main results: (a) Suppose $\Phi:U\to U$ is an isomorphism with $f\circ\Phi=f$ and $\Phi\vert_X=$id$X$. Then $\Phi$ induces an isomorphism $\Phi:PV_{U,f}\to PV_{U,f}$. We show that $\Phi_$ is multiplication by det$(d\Phi\vert_X)=1$ or $-1$. (b) $PV_{U,f}$ depends up to canonical isomorphism only on $X{(3)},f{(3)}$, for $X{(3)}$ the third-order thickening of $X$ in $U$, and $f{(3)}=f\vert_{X{(3)}}:X{(3)}\to\mathbb A1$. (c) If $U,V$ are smooth $\mathbb C$-schemes, $f:U\to\mathbb A1$, $g:V\to\mathbb A1$ are regular, $X=$Crit$(f)$, $Y=$Crit$(g)$, and $\Phi:U\to V$ is an embedding with $f=g\circ\Phi$ and $\Phi\vert_X:X\to Y$ an isomorphism, there is a natural isomorphism $\Theta_\Phi:PV_{U,f}\to\Phi\vert_X*(PV_{V,g})\otimes_{\mathbb Z_2}P_\Phi$, for $P_\Phi$ a natural principal $\mathbb Z_2$-bundle on $X$. (d) If $(X,s)$ is an oriented d-critical locus in the sense of Joyce arXiv:1304.4508, there is a natural perverse sheaf $P_{X,s}$ on $X$, such that if $(X,s)$ is locally modelled on Crit$(f:U\to\mathbb A1)$ then $P_{X,s}$ is locally modelled on $PV_{U,f}$. We also generalize our results to replace $U,X$ by complex analytic spaces, and $PV_{U,f}$ by $\mathcal D$-modules, or mixed Hodge modules. We discuss applications of (d) to categorifying Donaldson-Thomas invariants of Calabi-Yau 3-folds, and to defining a 'Fukaya category' of Lagrangians in a complex symplectic manifold using perverse sheaves. This is the third in a series of papers arXiv:1304.4508, arXiv:1305.6302, arXiv:1305.6428, arXiv:1312.0090, arXiv:1403.2403, arXiv:1404.1329, arXiv:1504.00690.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.