2000 character limit reached
Almost Hadamard matrices: the case of arbitrary exponents (1211.2669v1)
Published 12 Nov 2012 in math.CO
Abstract: In our previous work, we introduced the following relaxation of the Hadamard property: a square matrix $H\in M_N(\mathbb R)$ is called "almost Hadamard" if $U=H/\sqrt{N}$ is orthogonal, and locally maximizes the 1-norm on O(N). We review our previous results, notably with the formulation of a new question, regarding the circulant and symmetric case. We discuss then an extension of the almost Hadamard matrix formalism, by making use of the p-norm on O(N), with $p\in[1,\infty]-{2}$, with a number of theoretical results on the subject, and the formulation of some open problems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.