Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sequentially interacting Markov chain Monte Carlo methods (1211.2582v1)

Published 12 Nov 2012 in math.ST and stat.TH

Abstract: Sequential Monte Carlo (SMC) is a methodology for sampling approximately from a sequence of probability distributions of increasing dimension and estimating their normalizing constants. We propose here an alternative methodology named Sequentially Interacting Markov Chain Monte Carlo (SIMCMC). SIMCMC methods work by generating interacting non-Markovian sequences which behave asymptotically like independent Metropolis-Hastings (MH) Markov chains with the desired limiting distributions. Contrary to SMC, SIMCMC allows us to iteratively improve our estimates in an MCMC-like fashion. We establish convergence results under realistic verifiable assumptions and demonstrate its performance on several examples arising in Bayesian time series analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.