Papers
Topics
Authors
Recent
2000 character limit reached

Toroidal compactifications of integral models of Shimura varieties of Hodge type (1211.1731v6)

Published 8 Nov 2012 in math.NT and math.AG

Abstract: We construct projective toroidal compactifications for integral models of Shimura varieties of Hodge type. We also construct integral models of the minimal (Satake-Baily-Borel) compactification. Our results essentially reduce the problem to understanding the integral models themselves. As such, they cover all previously known cases of PEL type, as well as all cases of Hodge type involving parahoric level structures. At primes where the level is hyperspecial, we show that our compactifications are canonical in a precise sense. We also provide a new proof of Y. Morita's conjecture on the everywhere good reduction of abelian varieties whose Mumford-Tate group is anisotropic modulo center. Along the way, we demonstrate an interesting rationality property of Hodge cycles on abelian varieties with respect to p-adic analytic uniformizations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.