Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exact Lagrangian immersions with one double point revisited

Published 7 Nov 2012 in math.SG | (1211.1715v3)

Abstract: We study exact Lagrangian immersions with one double point of a closed orientable manifold K into n-complex-dimensional Euclidean space. Our main result is that if the Maslov grading of the double point does not equal 1 then K is homotopy equivalent to the sphere, and if, in addition, the Lagrangian Gauss map of the immersion is stably homotopic to that of the Whitney immersion, then K bounds a parallelizable (n+1)-manifold. The hypothesis on the Gauss map always holds when n=2k or when n=8k-1. The argument studies a filling of K obtained from solutions to perturbed Cauchy-Riemann equations with boundary on the image f(K) of the immersion. This leads to a new and simplified proof of some of the main results of arXiv:1111.5932, which treated Lagrangian immersions in the case n=2k by applying similar techniques to a Lagrange surgery of the immersion, as well as to an extension of these results to the odd-dimensional case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.