Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Non-abelian vortices on CP^1 and Grassmannians (1211.1662v2)

Published 7 Nov 2012 in hep-th, math-ph, and math.MP

Abstract: Many properties of the moduli space of abelian vortices on a compact Riemann surface are known. For non-abelian vortices the moduli space is less well understood. Here we consider non-abelian vortices on the Riemann sphere CP1, and we study their moduli spaces near the Bradlow limit. We give an explicit description of the moduli space as a Kahler quotient of a finite-dimensional linear space. The dimensions of some of these moduli spaces are derived. Strikingly, there exist non-abelian vortex configurations on CP1, with non-trivial vortex number, for which the moduli space is a point. This is in stark contrast to the moduli space of abelian vortices. For a special class of non-abelian vortices the moduli space is a Grassmannian, and the metric near the Bradlow limit is a natural generalization of the Fubini--Study metric on complex projective space. We use this metric to investigate the statistical mechanics of non-abelian vortices. The partition function is found to be analogous to the one for abelian vortices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube