Macroscopic diffusion from a Hamilton-like dynamics (1211.0608v2)
Abstract: We introduce and analyze a model for the transport of particles or energy in extended lattice systems. The dynamics of the model acts on a discrete phase space at discrete times but has nonetheless some of the characteristic properties of Hamiltonian dynamics in a confined phase space : it is deterministic, periodic, reversible and conservative. Randomness enters the model as a way to model ignorance about initial conditions and interactions between the components of the system. The orbits of the particles are non-intersecting random loops. We prove, by a weak law of large number, the validity of a diffusion equation for the macroscopic observables of interest for times that are arbitrary large, but small compared to the minimal recurrence time of the dynamics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.