Papers
Topics
Authors
Recent
2000 character limit reached

Sequence variations of the 1-2-3 Conjecture and irregularity strength (1211.0463v1)

Published 2 Nov 2012 in math.CO and cs.DM

Abstract: Karonski, Luczak, and Thomason (2004) conjectured that, for any connected graph G on at least three vertices, there exists an edge weighting from {1,2,3} such that adjacent vertices receive different sums of incident edge weights. Bartnicki, Grytczuk, and Niwcyk (2009) made a stronger conjecture, that each edge's weight may be chosen from an arbitrary list of size 3 rather than {1,2,3}. We examine a variation of these conjectures, where each vertex is coloured with a sequence of edge weights. Such a colouring relies on an ordering of the graph's edges, and so two variations arise -- one where we may choose any ordering of the edges and one where the ordering is fixed. In the former case, we bound the list size required for any graph. In the latter, we obtain a bound on list sizes for graphs with sufficiently large minimum degree. We also extend our methods to a list variation of irregularity strength, where each vertex receives a distinct sequence of edge weights.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.