Papers
Topics
Authors
Recent
2000 character limit reached

Anomaly Detection in Time Series of Graphs using Fusion of Graph Invariants (1210.8429v1)

Published 31 Oct 2012 in stat.ML

Abstract: Given a time series of graphs G(t) = (V, E(t)), t = 1, 2, ..., where the fixed vertex set V represents "actors" and an edge between vertex u and vertex v at time t (uv \in E(t)) represents the existence of a communications event between actors u and v during the tth time period, we wish to detect anomalies and/or change points. We consider a collection of graph features, or invariants, and demonstrate that adaptive fusion provides superior inferential efficacy compared to naive equal weighting for a certain class of anomaly detection problems. Simulation results using a latent process model for time series of graphs, as well as illustrative experimental results for a time series of graphs derived from the Enron email data, show that a fusion statistic can provide superior inference compared to individual invariants alone. These results also demonstrate that an adaptive weighting scheme for fusion of invariants performs better than naive equal weighting.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.