Papers
Topics
Authors
Recent
2000 character limit reached

Neutral stability, rate propagation, and critical branching in feedforward networks (1210.8406v1)

Published 31 Oct 2012 in q-bio.NC

Abstract: Recent experimental and computational evidence suggests that several dynamical properties may characterize the operating point of functioning neural networks: critical branching, neutral stability, and production of a wide range of firing patterns. We seek the simplest setting in which these properties emerge, clarifying their origin and relationship in random, feedforward networks of McCullochs-Pitts neurons. Two key parameters are the thresholds at which neurons fire spikes, and the overall level of feedforward connectivity. When neurons have low thresholds, we show that there is always a connectivity for which the properties in question all occur: that is, these networks preserve overall firing rates from layer to layer and produce broad distributions of activity in each layer. This fails to occur, however, when neurons have high thresholds. A key tool in explaining this difference is eigenstructure of the resulting mean-field Markov chain, as this reveals which activity modes will be preserved from layer to layer. We extend our analysis from purely excitatory networks to more complex models that include inhibition and 'local' noise, and find that both of these features extend the parameter ranges over which networks produce the properties of interest.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.