Papers
Topics
Authors
Recent
Search
2000 character limit reached

Signal Detection in High Dimension: The Multispiked Case

Published 20 Oct 2012 in math.ST, math.PR, and stat.TH | (1210.5663v1)

Abstract: This paper deals with the local asymptotic structure, in the sense of Le Cam's asymptotic theory of statistical experiments, of the signal detection problem in high dimension. More precisely, we consider the problem of testing the null hypothesis of sphericity of a high-dimensional covariance matrix against an alternative of (unspecified) multiple symmetry-breaking directions (\textit{multispiked} alternatives). Simple analytical expressions for the asymptotic power envelope and the asymptotic powers of previously proposed tests are derived. These asymptotic powers are shown to lie very substantially below the envelope, at least for relatively small values of the number of symmetry-breaking directions under the alternative. In contrast, the asymptotic power of the likelihood ratio test based on the eigenvalues of the sample covariance matrix is shown to be close to that envelope. These results extend to the case of multispiked alternatives the findings of an earlier study (Onatski, Moreira and Hallin, 2011) of the single-spiked case. The methods we are using here, however, are entirely new, as the Laplace approximations considered in the single-spiked context do not extend to the multispiked case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.