Papers
Topics
Authors
Recent
2000 character limit reached

The field of definition of affine invariant submanifolds of the moduli space of abelian differentials (1210.4806v3)

Published 17 Oct 2012 in math.DS

Abstract: The field of definition of an affine invariant submanifold M is the smallest subfield of the reals such that M can be defined in local period coordinates by linear equations with coefficients in this field. We show that the field of definition is equal to the intersection of the holonomy fields of translation surfaces in M, and is a real number field of degree at most the genus. We show that the projection of the tangent bundle of M to absolute cohomology H1 is simple, and give a direct sum decomposition of H1. Applications include explicit full measure sets of translation surfaces whose orbit closures are as large as possible, and evidence for finiteness of algebraically primitive Teichm\"uller curves. The proofs use recent results of Artur Avila, Alex Eskin, Maryam Mirzakhani, Amir Mohammadi, and Martin M\"oller.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.