Papers
Topics
Authors
Recent
Search
2000 character limit reached

Crossed products of C*-algebras for singular actions

Published 12 Oct 2012 in math.OA, math-ph, and math.MP | (1210.3409v2)

Abstract: We consider group actions of topological groups on C*-algebras of the types which occur in many physics models. These are singular actions in the sense that they need not be strongly continuous, or the group need not be locally compact. We develop a "crossed product host" in analogy to the usual crossed product for strongly continuous actions of locally compact groups, in the sense that its representation theory is in a natural bijection with the covariant representation theory of the action. We prove a uniqueness theorem for crossed product hosts, and analyze existence conditions. We also present a number of examples where a crossed product host exists, but the usual crossed product does not. For actions where a crossed product host does not exist, we obtain a "maximal" invariant subalgebra for which a crossed product host exists. We further study the case of a discontinuous action of a locally compact group in detail.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.