Large deviations for weighted empirical measures arising in importance sampling (1210.2251v2)
Abstract: Importance sampling is a popular method for efficient computation of various properties of a distribution such as probabilities, expectations, quantiles etc. The output of an importance sampling algorithm can be represented as a weighted empirical measure, where the weights are given by the likelihood ratio between the original distribution and the sampling distribution. In this paper the efficiency of an importance sampling algorithm is studied by means of large deviations for the weighted empirical measure. The main result, which is stated as a Laplace principle for the weighted empirical measure arising in importance sampling, can be viewed as a weighted version of Sanov's theorem. The main theorem is applied to quantify the performance of an importance sampling algorithm over a collection of subsets of a given target set as well as quantile estimates. The analysis yields an estimate of the sample size needed to reach a desired precision as well as of the reduction in cost for importance sampling compared to standard Monte Carlo.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.