Ergodicity and indistinguishability in percolation theory (1210.1548v3)
Abstract: This paper explores the link between the ergodicity of the clus-ter equivalence relation restricted to its infinite locus and the indis-tinguishability of infinite clusters. It is an important element of the dictionary connecting orbit equivalence and percolation theory. This note starts with a short exposition of some standard material of these theories. Then, the classic correspondence between ergodicity and in-distinguishability is presented. Finally, we introduce a notion of strong indistinguishability that corresponds to strong ergodicity, and obtain that this strong indistinguishability holds in the Bernoulli case. We also define an invariant percolation that is not insertion-tolerant, sat-isfies the Indistinguishability Property and does not satisfy the Strong Indistinguishability Property.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.