Two Topological Uniqueness Theorems for Spaces of Real Numbers (1210.1008v1)
Abstract: A 1910 theorem of Brouwer characterizes the Cantor set as the unique totally disconnected, compact metric space without isolated points. A 1920 theorem of Sierpinski characterizes the rationals as the unique countable metric space without isolated points. The purpose of this exposition is to give an accessible overview of this celebrated pair of uniqueness results. It is illuminating to treat the problems simultaneously because of commonalities in their proofs. Some of the more counterintuitive implications of these results are explored through examples. Additionally, near-examples are provided which thwart various attempts to relax hypotheses.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.