Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A vector-valued almost sure invariance principle for Sinai billiards with random scatterers (1210.0902v3)

Published 2 Oct 2012 in math.DS, math-ph, math.MP, and math.PR

Abstract: Understanding the statistical properties of the aperiodic planar Lorentz gas stands as a grand challenge in the theory of dynamical systems. Here we study a greatly simplified but related model, proposed by Arvind Ayyer and popularized by Joel Lebowitz, in which a scatterer configuration on the torus is randomly updated between collisions. Taking advantage of recent progress in the theory of time-dependent billiards on the one hand and in probability theory on the other, we prove a vector-valued almost sure invariance principle for the model. Notably, the configuration sequence can be weakly dependent and non-stationary. We provide an expression for the covariance matrix, which in the non-stationary case differs from the traditional one. We also obtain a new invariance principle for Sinai billiards (the case of fixed scatterers) with time-dependent observables, and improve the accuracy and generality of existing results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.