Papers
Topics
Authors
Recent
2000 character limit reached

A complete convergence theorem for voter model perturbations (1210.0830v2)

Published 2 Oct 2012 in math.PR

Abstract: We prove a complete convergence theorem for a class of symmetric voter model perturbations with annihilating duals. A special case of interest covered by our results is the stochastic spatial Lotka-Volterra model introduced by Neuhauser and Pacala [Ann. Appl. Probab. 9 (1999) 1226-1259]. We also treat two additional models, the "affine" and "geometric" voter models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.