Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Schubert problems with respect to osculating flags of stable rational curves (1209.5409v1)

Published 24 Sep 2012 in math.AG and math.CO

Abstract: Given a point z in P1, let F(z) be the osculating flag to the rational normal curve at point z. The study of Schubert problems with respect to such flags F(z_1), F(z_2), ..., F(z_r) has been studied both classically and recently, especially when the points z_i are real. Since the rational normal curve has an action of PGL_2, it is natural to consider the points (z_1, ..., z_r) as living in the moduli space of r distinct point in P1 -- the famous M_{0,r}. One can then ask to extend the results on Schubert intersections to the compactification \bar{M}{0,r}. The first part of this paper achieves this goal. We construct a flat, Cohen-Macaulay family over \bar{M}{0,r}, whose fibers over M_{0,r} are isomorphic to G(d,n) and, given partitions lambda_1, ..., lambda_r, we construct a flat Cohen-Macualay family over \bar{M}{0,r} whose fiber over (z_1, ..., z_r) in M{0,r} is the intersection of the Schubert varieties indexed by lambda_i with respect to the osculating flags F(z_i). In the second part of the paper, we investigate the topology of the real points of our family, in the case that sum |lambda_i| = dim G(d,n). We show that our family is a finite covering space of \bar{M}_{0,r}, and give an explicit CW decomposition of this cover whose faces are indexed by objects from the theory of Young tableaux.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube