Papers
Topics
Authors
Recent
2000 character limit reached

Discrete harmonic analysis on a Weyl alcove

Published 14 Sep 2012 in math.RT, math-ph, and math.MP | (1209.3296v2)

Abstract: We introduce a representation of the double affine Hecke algebra at the critical level q=1 in terms of difference-reflection operators and use it to construct an explicit integrable discrete Laplacian on the Weyl alcove corresponding to an element in the center. The Laplacian in question is to be viewed as an integrable discretization of the conventional Laplace operator on Euclidian space perturbed by a delta-potential supported on the reflection hyperplanes of the affine Weyl group. The Bethe Ansatz method is employed to show that our discrete Laplacian and its commuting integrals are diagonalized by a finite-dimensional basis of periodic Macdonald spherical functions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.