Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras (1209.2966v1)

Published 13 Sep 2012 in math.FA and math.AG

Abstract: Let $A$ be a commutative unital $\mathbb{R}$-algebra and let $\rho$ be a seminorm on $A$ which satisfies $\rho(ab)\leq\rho(a)\rho(b)$. We apply T. Jacobi's representation theorem to determine the closure of a $\sum A{2d}$-module $S$ of $A$ in the topology induced by $\rho$, for any integer $d\ge1$. We show that this closure is exactly the set of all elements $a\in A$ such that $\alpha(a)\ge0$ for every $\rho$-continuous $\mathbb{R}$-algebra homomorphism $\alpha : A \rightarrow \mathbb{R}$ with $\alpha(S)\subseteq[0,\infty)$, and that this result continues to hold when $\rho$ is replaced by any locally multiplicatively convex topology $\tau$ on $A$. We obtain a representation of any linear functional $L : A \rightarrow \reals$ which is continuous with respect to any such $\rho$ or $\tau$ and non-negative on $S$ as integration with respect to a unique Radon measure on the space of all real valued $\reals$-algebra homomorphisms on $A$, and we characterize the support of the measure obtained in this way.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube