2000 character limit reached
Geodesics in infinite dimensional Stiefel and Grassmann manifolds (1209.2878v1)
Published 13 Sep 2012 in math.DG
Abstract: Let $V$ be a separable Hilbert space, possibly infinite dimensional. Let $\St(p,V)$ be the Stiefel manifold of orthonormal frames of $p$ vectors in $V$, and let $\Gr(p,V)$ be the Grassmann manifold of $p$ dimensional subspaces of $V$. We study the distance and the geodesics in these manifolds, by reducing the matter to the finite dimensional case. We then prove that any two points in those manifolds can be connected by a minimal geodesic, and characterize the cut locus.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.