2000 character limit reached
Some examples of tilt-stable objects on threefolds (1209.2749v1)
Published 12 Sep 2012 in math.AG
Abstract: We investigate properties and describe examples of tilt-stable objects on a smooth complex projective threefold. We give a structure theorem on slope semistable sheaves of vanishing discriminant, and describe certain Chern classes for which every slope semistable sheaf yields a Bridgeland semistable object of maximal phase. Then, we study tilt stability as the polarisation $\omega$ gets large, and give sufficient conditions for tilt-stability of sheaves of the following two forms: 1) twists of ideal sheaves or 2) torsion-free sheaves whose first Chern class is twice a minimum possible value.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.