Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Adaptive Smoothing Spline using Stochastic Differential Equations

Published 10 Sep 2012 in math.ST, stat.CO, and stat.TH | (1209.2013v1)

Abstract: The smoothing spline is one of the most popular curve-fitting methods, partly because of empirical evidence supporting its effectiveness and partly because of its elegant mathematical formulation. However, there are two obstacles that restrict the use of smoothing spline in practical statistical work. Firstly, it becomes computationally prohibitive for large data sets because the number of basis functions roughly equals the sample size. Secondly, its global smoothing parameter can only provide constant amount of smoothing, which often results in poor performances when estimating inhomogeneous functions. In this work, we introduce a class of adaptive smoothing spline models that is derived by solving certain stochastic differential equations with finite element methods. The solution extends the smoothing parameter to a continuous data-driven function, which is able to capture the change of the smoothness of underlying process. The new model is Markovian, which makes Bayesian computation fast. A simulation study and real data example are presented to demonstrate the effectiveness of our method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.