The bondage number of graphs on topological surfaces and Teschner's conjecture (1209.1362v1)
Abstract: The bondage number of a graph is the smallest number of its edges whose removal results in a graph having a larger domination number. We provide constant upper bounds for the bondage number of graphs on topological surfaces, improve upper bounds for the bondage number in terms of the maximum vertex degree and the orientable and non-orientable genera of the graph, and show tight lower bounds for the number of vertices of graphs 2-cell embeddable on topological surfaces of a given genus. Also, we provide stronger upper bounds for graphs with no triangles and graphs with the number of vertices larger than a certain threshold in terms of the graph genera. This settles Teschner's Conjecture in positive for almost all graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.