Papers
Topics
Authors
Recent
Search
2000 character limit reached

Period Distribution of Inversive Pseudorandom Number Generators Over Finite Fields

Published 6 Sep 2012 in cs.IT and math.IT | (1209.1295v1)

Abstract: In this paper, we focus on analyzing the period distribution of the inversive pseudorandom number generators (IPRNGs) over finite field $({\rm Z}_{N},+,\times)$, where $N>3$ is a prime. The sequences generated by the IPRNGs are transformed to 2-dimensional linear feedback shift register (LFSR) sequences. By employing the generating function method and the finite field theory, the period distribution is obtained analytically. The analysis process also indicates how to choose the parameters and the initial values such that the IPRNGs fit specific periods. The analysis results show that there are many small periods if $N$ is not chosen properly. The experimental examples show the effectiveness of the theoretical analysis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.