Papers
Topics
Authors
Recent
2000 character limit reached

An Exceptional Collection For Khovanov Homology

Published 5 Sep 2012 in math.QA and math.GT | (1209.1002v3)

Abstract: The Temperley-Lieb algebra is a fundamental component of SU(2) topological quantum field theories. We construct chain complexes corresponding to minimal idempotents in the Temperley-Lieb algebra. Our results apply to the framework which determines Khovanov homology. Consequences of our work include semi-orthogonal decompositions of categorifications of Temperley-Lieb algebras and Postnikov decompositions of all Khovanov tangle invariants.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.