2000 character limit reached
An Exceptional Collection For Khovanov Homology
Published 5 Sep 2012 in math.QA and math.GT | (1209.1002v3)
Abstract: The Temperley-Lieb algebra is a fundamental component of SU(2) topological quantum field theories. We construct chain complexes corresponding to minimal idempotents in the Temperley-Lieb algebra. Our results apply to the framework which determines Khovanov homology. Consequences of our work include semi-orthogonal decompositions of categorifications of Temperley-Lieb algebras and Postnikov decompositions of all Khovanov tangle invariants.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.