Seminormal forms for the Temperley-Lieb algebra (2303.10682v2)
Abstract: Let ${\mathbb{TL}n{! \mathbb Q}} $ be the rational Temperley-Lieb algebra, with loop parameter $ 2 $. In the first part of the paper we study the seminormal idempotents $ E{ \mathfrak{t}} $ for ${\mathbb{TL}n{! \mathbb Q}}$ for $ \mathfrak{t} $ running over two-column standard tableaux. Our main result is here a concrete combinatorial construction of $ E{\mathfrak{t}} $ using Jones-Wenzl idempotents $ {\mathbf{JW}{! k}} $ for ${\mathbb{TL}_k{! \mathbb Q}}$ where $ k \le n $. In the second part of the paper we consider the Temperley-Lieb algebra ${\mathbb{TL}_n{! {\mathbb F}_p}}$ over the finite field $ {\mathbb F}_p$, where $ p>2$. The KLR-approach to ${\mathbb{TL}_n{! {\mathbb F}_p}}$ gives rise to an action of a symmetric group $ \mathfrak{S}_m$ on ${\mathbb{TL}_n{! {\mathbb F}_p}}$, for some $ m < n $. We show that the $ E{ \mathfrak{t}} $'s from the first part of the paper are simultaneous eigenvectors for the associated Jucys-Murphy elements for $ \mathfrak{S}m$. This leads to a KLR-interpretation of the $p$-Jones-Wenzl idempotent $ {p}!{\mathbf{JW}{! n}} $ for ${\mathbb{TL}_n{! {\mathbb F}_p}}$, that was introduced recently by Burull, Libedinsky and Sentinelli.