Nonlocal Hardy type inequalities with optimal constants and remainder terms (1208.6447v1)
Abstract: Using a groundstate transformation, we give a new proof of the optimal Stein-Weiss inequality of Herbst [\int_{\RN} \int_{\RN} \frac{\varphi (x)}{\abs{x}\frac{\alpha}{2}} I_\alpha (x - y) \frac{\varphi (y)}{\abs{y}\frac{\alpha}{2}}\dif x \dif y \le \mathcal{C}{N,\alpha, 0}\int{\RN} \abs{\varphi}2,] and of its combinations with the Hardy inequality by Beckner [\int_{\RN} \int_{\RN} \frac{\varphi (x)}{\abs{x}\frac{\alpha + s}{2}} I_\alpha (x - y) \frac{\varphi (y)}{\abs{y}\frac{\alpha + s}{2}}\dif x \dif y \le \mathcal{C}{N, \alpha, 1} \int{\RN} \abs{\nabla \varphi}2,] and with the fractional Hardy inequality [\int_{\RN} \int_{\RN} \frac{\varphi (x)}{\abs{x}\frac{\alpha + s}{2}} I_\alpha (x - y) \frac{\varphi (y)}{\abs{y}\frac{\alpha + s}{2}}\dif x \dif y \le \mathcal{C}{N, \alpha, s} \mathcal{D}{N, s} \int_{\RN} \int_{\RN} \frac{\bigabs{\varphi (x) - \varphi (y)}2}{\abs{x-y}{N+s}}\dif x \dif y] where (I_\alpha) is the Riesz potential, (0 < \alpha < N) and (0 < s < \min(N, 2)). We also prove the optimality of the constants. The method is flexible and yields a sharp expression for the remainder terms in these inequalities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.