Remarks on non-maximal integral elements of the Cartan plane in jet spaces (1208.5880v3)
Abstract: There is a natural filtration on the space of degree-$k$ homogeneous polynomials in $n$ independent variables with coefficients in the algebra of smooth functions on the Grassmannian $\mathrm{Gr}(n,s)$, determined by the tautological bundle. In this paper we show that the space of $s$-dimensional integral elements of a Cartan plane on $J{k-1}(E,n)$, with $\mathrm{dim}\, E=n+m$, has an affine bundle structure modeled by the the so-obtained bundles over $\mathrm{Gr}(n,s)$, and we study a natural distribution associated with it. As an example, we show that a third-order nonlinear PDE of Monge-Amp`ere type is not contact-equivalent to a quasi-linear one.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.