2000 character limit reached
On groups admitting a word whose values are Engel (1208.5623v1)
Published 28 Aug 2012 in math.GR
Abstract: Let m, n be positive integers, v a multilinear commutator word and w = vm. We prove that if G is a residually finite group in which all w-values are n-Engel, then the verbal subgroup w(G) is locally nilpotent. We also examine the question whether this is true in the case where G is locally graded rather than residually finite. We answer the question affirmatively in the case where m = 1. Moreover, we show that if u is a non-commutator word and G is a locally graded group in which all u-values are n-Engel, then the verbal subgroup u(G) is locally nilpotent.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.