Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Some properties of the Yamabe soliton and the related nonlinear elliptic equation (1208.4445v3)

Published 22 Aug 2012 in math.AP and math.DG

Abstract: We will prove the non-existence of positive radially symmetric solution of the nonlinear elliptic equation $\frac{n-1}{m}\Delta vm+\alpha v+\beta x\cdot\nabla u=0$ in $Rn$ when $n\ge 3$, $0<m\le\frac{n-2}{n}$, $\alpha\<0$ and $\beta\le 0$. Let $n\ge 3$ and $g=v^{\frac{4}{n+2}}dx^2$ be a metric on $\R^n$ where $v$ is a radially symmetric solution of the above elliptic equation in $R^n$ with $m=\frac{n-2}{n+2}$, $\alpha=\frac{2\beta+\rho}{1-m}$ and $\rho\in R$. For $n\ge 3$, $m=\frac{n-2}{n+2}$, we will prove that $\lim_{r\to\infty}r^2v^{1-m}(r)=\frac{(n-1)(n-2)}{\rho}$ if $\beta>\frac{\rho}{n-2}>0$, the scalar curvature $R(r)\to\rho$ as $r\to\infty$ if either $\beta>\frac{\rho}{n-2}>0$ or $\rho=0$ and $\alpha>0$ holds, and $\lim_{r\to\infty}R(r)=0$ if $\rho<0$ and $\alpha>0$. We give a simple different proof of a result of P.Daskalopoulos and N.Sesum \cite{DS2} on the positivity of the sectional curvature of rotational symmetric Yamabe solitons $g=v{\frac{4}{n+2}}dx2$ with $v$ satisfying the above equation with $m=\frac{n-2}{n+2}$. We will also find the exact value of the sectional curvature of such Yamabe solitons at the origin and at infinity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.