Supersaturation Problem for Color-Critical Graphs (1208.4319v3)
Abstract: The \emph{Tur\'an function} $\ex(n,F)$ of a graph $F$ is the maximum number of edges in an $F$-free graph with $n$ vertices. The classical results of Tur\'an and Rademacher from 1941 led to the study of supersaturated graphs where the key question is to determine $h_F(n,q)$, the minimum number of copies of $F$ that a graph with $n$ vertices and $\ex(n,F)+q$ edges can have. We determine $h_F(n,q)$ asymptotically when $F$ is \emph{color-critical} (that is, $F$ contains an edge whose deletion reduces its chromatic number) and $q=o(n2)$. Determining the exact value of $h_F(n,q)$ seems rather difficult. For example, let $c_1$ be the limit superior of $q/n$ for which the extremal structures are obtained by adding some $q$ edges to a maximum $F$-free graph. The problem of determining $c_1$ for cliques was a well-known question of Erd\H os that was solved only decades later by Lov\'asz and Simonovits. Here we prove that $c_1>0$ for every {color-critical}~$F$. Our approach also allows us to determine $c_1$ for a number of graphs, including odd cycles, cliques with one edge removed, and complete bipartite graphs plus an edge.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.