Papers
Topics
Authors
Recent
Search
2000 character limit reached

Limit distributions of random matrices

Published 17 Aug 2012 in math.OA and math.PR | (1208.3586v4)

Abstract: We study limit distributions of independent random matrices as well as limit joint distributions of their blocks under normalized partial traces composed with classical expectation. In particular, we are concerned with the ensemble of symmetric blocks of independent Hermitian random matrices which are asymptotically free, asymptotically free from diagonal deterministic matrices, and whose norms are uniformly bounded. This class contains symmetric blocks of unitarily invariant Hermitian random matrices whose asymptotic distributions are compactly supported probability measures on the real line. Our approach is based on the concept of matricial freeness which is a generalization of freeness in free probability. We show that the associated matricially free Gaussian operators provide a unified framework for studying the limit distributions of sums and products of independent rectangular random matrices, including non-Hermitian Gaussian matrices and matrices of Wishart type. This framework also leads to random matrix models for boolean, monotone and s-free independences.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.