On Derivatives and Subpattern Orders of Countable Subshifts
Abstract: We study the computational and structural aspects of countable two-dimensional SFTs and other subshifts. Our main focus is on the topological derivatives and subpattern posets of these objects, and our main results are constructions of two-dimensional countable subshifts with interesting properties. We present an SFT whose iterated derivatives are maximally complex from the computational point of view, a sofic shift whose subpattern poset contains an infinite descending chain, a family of SFTs whose finite subpattern posets contain arbitrary finite posets, and a natural example of an SFT with infinite Cantor-Bendixon rank.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.