Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sum of Two Squares - Pair Correlation and Distribution in Short Intervals

Published 12 Aug 2012 in math.NT | (1208.2419v2)

Abstract: In this work we show that based on a conjecture for the pair correlation of integers representable as sums of two squares, which was first suggested by Connors and Keating and reformulated here, the second moment of the distribution of the number of representable integers in short intervals is consistent with a Poissonian distribution, where "short" means of length comparable to the mean spacing between sums of two squares. In addition we present a method for producing such conjectures through calculations in prime power residue rings and describe how these conjectures, as well as the above stated result, may by generalized to other binary quadratic forms. While producing these pair correlation conjectures we arrive at a surprising result regarding Mertens' formula for primes in arithmetic progressions, and in order to test the validity of the conjectures, we present numericalz computations which support our approach.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.