Sum of Two Squares - Pair Correlation and Distribution in Short Intervals
Abstract: In this work we show that based on a conjecture for the pair correlation of integers representable as sums of two squares, which was first suggested by Connors and Keating and reformulated here, the second moment of the distribution of the number of representable integers in short intervals is consistent with a Poissonian distribution, where "short" means of length comparable to the mean spacing between sums of two squares. In addition we present a method for producing such conjectures through calculations in prime power residue rings and describe how these conjectures, as well as the above stated result, may by generalized to other binary quadratic forms. While producing these pair correlation conjectures we arrive at a surprising result regarding Mertens' formula for primes in arithmetic progressions, and in order to test the validity of the conjectures, we present numericalz computations which support our approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.