Papers
Topics
Authors
Recent
2000 character limit reached

On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties (1208.0815v3)

Published 3 Aug 2012 in math.DS and math.NT

Abstract: Let f : X --> X be a dominant rational map of a projective variety defined over a global field, let d_f be the dynamical degree of f, and let h_X be a Weil height on X relative to an ample divisor. We prove that h_X(fn(P)) << (d_f + e)n h_X(P), where the implied constant depends only on X, h_X, f, and e. As applications, we prove a fundamental inequality a_f(P) \le d_f for the upper arithmetic degree and we construct canonical heights for (nef) divisors. We conjecture that a_f(P) = d_f whenever the orbit of P is Zariski dense, and we describe some cases for which we can prove our conjecture.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.