Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Concentration inequalities for order statistics (1207.7209v1)

Published 31 Jul 2012 in math.PR, math.ST, and stat.TH

Abstract: This note describes non-asymptotic variance and tail bounds for order statistics of samples of independent identically distributed random variables. Those bounds are checked to be asymptotically tight when the sampling distribution belongs to a maximum domain of attraction. If the sampling distribution has non-decreasing hazard rate (this includes the Gaussian distribution), we derive an exponential Efron-Stein inequality for order statistics: an inequality connecting the logarithmic moment generating function of centered order statistics with exponential moments of Efron-Stein (jackknife) estimates of variance. We use this general connection to derive variance and tail bounds for order statistics of Gaussian sample. Those bounds are not within the scope of the Tsirelson-Ibragimov-Sudakov Gaussian concentration inequality. Proofs are elementary and combine R\'enyi's representation of order statistics and the so-called entropy approach to concentration inequalities popularized by M. Ledoux.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.