Papers
Topics
Authors
Recent
2000 character limit reached

Probabilistic cellular automata and random fields with i.i.d. directions

Published 25 Jul 2012 in math.PR, cs.DM, and nlin.CG | (1207.5917v1)

Abstract: Let us consider the simplest model of one-dimensional probabilistic cellular automata (PCA). The cells are indexed by the integers, the alphabet is {0, 1}, and all the cells evolve synchronously. The new content of a cell is randomly chosen, independently of the others, according to a distribution depending only on the content of the cell itself and of its right neighbor. There are necessary and sufficient conditions on the four parameters of such a PCA to have a Bernoulli product invariant measure. We study the properties of the random field given by the space-time diagram obtained when iterating the PCA starting from its Bernoulli product invariant measure. It is a non-trivial random field with very weak dependences and nice combinatorial properties. In particular, not only the horizontal lines but also the lines in any other direction consist in i.i.d. random variables. We study extensions of the results to Markovian invariant measures, and to PCA with larger alphabets and neighborhoods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.