Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Ergodic BSDEs driven by Markov Chains (1207.5680v1)

Published 24 Jul 2012 in math.PR and math.OC

Abstract: We consider ergodic backward stochastic differential equations, in a setting where noise is generated by a countable state uniformly ergodic Markov chain. We show that for Lipschitz drivers such that a comparison theorem holds, these equations admit unique solutions. To obtain this result, we show by coupling and splitting techniques that uniform ergodicity estimates of Markov chains are robust to perturbations of the rate matrix, and that these perturbations correspond in a natural way to EBSDEs. We then consider applications of this theory to Markov decision problems with a risk-averse average reward criterion.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.