Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The algebra of dual -1 Hahn polynomials and the Clebsch-Gordan problem of sl_{-1}(2) (1207.4220v2)

Published 17 Jul 2012 in math-ph, math.MP, and math.QA

Abstract: The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl_{-1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from a q-> -1 limit of the dual q-Hahn polynomials. The Hopf algebra sl_{-1}(2) has four generators including an involution, it is also a q-> -1 limit of the quantum algebra sl_{q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of the -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl_{-1}(2) algebras, so that the Clebsch-Gordan coefficients of sl_{-1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.