Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MOB-ESP and other Improvements in Probability Estimation (1207.4132v1)

Published 11 Jul 2012 in cs.LG, cs.AI, and stat.ML

Abstract: A key prerequisite to optimal reasoning under uncertainty in intelligent systems is to start with good class probability estimates. This paper improves on the current best probability estimation trees (Bagged-PETs) and also presents a new ensemble-based algorithm (MOB-ESP). Comparisons are made using several benchmark datasets and multiple metrics. These experiments show that MOB-ESP outputs significantly more accurate class probabilities than either the baseline BPETs algorithm or the enhanced version presented here (EB-PETs). These results are based on metrics closely associated with the average accuracy of the predictions. MOB-ESP also provides much better probability rankings than B-PETs. The paper further suggests how these estimation techniques can be applied in concert with a broader category of classifiers.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.