Qualitative Approximate Behavior Composition (1207.3863v1)
Abstract: The behavior composition problem involves automatically building a controller that is able to realize a desired, but unavailable, target system (e.g., a house surveillance) by suitably coordinating a set of available components (e.g., video cameras, blinds, lamps, a vacuum cleaner, phones, etc.) Previous work has almost exclusively aimed at bringing about the desired component in its totality, which is highly unsatisfactory for unsolvable problems. In this work, we develop an approach for approximate behavior composition without departing from the classical setting, thus making the problem applicable to a much wider range of cases. Based on the notion of simulation, we characterize what a maximal controller and the "closest" implementable target module (optimal approximation) are, and show how these can be computed using ATL model checking technology for a special case. We show the uniqueness of optimal approximations, and prove their soundness and completeness with respect to their imported controllers.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.