On a bounded version of Holder's Theorem and an application to the permutability equation (1207.3848v1)
Abstract: The permutability equation G(G(x,y),z) = G(G(x,z),y) is satisfied by many scientific and geometric laws. A few examples among many are: The Lorentz-FitzGerald Contraction, Beer's Law, the Pythagorean Theorem, and the formula for computing the volume of a cylinder. We prove here a representation theorem for the permutability equation, which generalizes a well-known result. The proof is based on a bounded version of Holder's Theorem.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.