Papers
Topics
Authors
Recent
Search
2000 character limit reached

Twisted isotropic realisations of twisted Poisson structures

Published 16 Jul 2012 in math.SG, math-ph, math.MP, and nlin.SI | (1207.3655v1)

Abstract: Motivated by the recent connection between nonholonomic integrable systems and twisted Poisson manifolds made in \cite{balseiro_garcia_naranjo}, this paper investigates the global theory of integrable Hamiltonian systems on almost symplectic manifolds as an initial step to understand Hamiltonian integrability on twisted Poisson (and Dirac) manifolds. Non-commutative integrable Hamiltonian systems on almost symplectic manifolds were first defined in \cite{fasso_sansonetto}, which proved existence of local generalised action-angle coordinates in the spirit of the Liouville-Arnol'd theorem. In analogy with their symplectic counterpart, these systems can be described globally by twisted isotropic realisations of twisted Poisson manifolds, a special case of symplectic realisations of twisted Dirac structures considered in \cite{bursztyn_crainic_weinstein_zhu}. This paper classifies twisted isotropic realisations up to smooth isomorphism and provides a cohomological obstruction to the construction of these objects, generalising the main results of \cite{daz_delz}.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.