Papers
Topics
Authors
Recent
Search
2000 character limit reached

Minimal Convex Decompositions

Published 14 Jul 2012 in cs.CG, math.CO, and math.MG | (1207.3468v1)

Abstract: Let $P$ be a set of $n$ points on the plane in general position. We say that a set $\Gamma$ of convex polygons with vertices in $P$ is a convex decomposition of $P$ if: Union of all elements in $\Gamma$ is the convex hull of $P,$ every element in $\Gamma$ is empty, and for any two different elements of $\Gamma$ their interiors are disjoint. A minimal convex decomposition of $P$ is a convex decomposition $\Gamma'$ such that for any two adjacent elements in $\Gamma'$ its union is a non convex polygon. It is known that $P$ always has a minimal convex decomposition with at most $\frac{3n}{2}$ elements. Here we prove that $P$ always has a minimal convex decomposition with at most $\frac{10n}{7}$ elements.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.