Papers
Topics
Authors
Recent
2000 character limit reached

Finite random coverings of one-complexes and the Euler characteristic (1207.1133v3)

Published 4 Jul 2012 in math.AT and math.PR

Abstract: This article presents an algebraic topology perspective on the problem of finding a complete coverage probability of a one dimensional domain $X$ by a random covering, and develops techniques applicable to the problem beyond the one dimensional case. In particular we obtain a general formula for the chance that a collection of finitely many compact connected random sets placed on $X$ has a union equal to $X$. The result is derived under certain topological assumptions on the shape of the covering sets (the covering ought to be {\em good}, which holds if the diameter of the covering elements does not exceed a certain size), but no a priori requirements on their distribution. An upper bound for the coverage probability is also obtained as a consequence of the concentration inequality. The techniques rely on a formulation of the coverage criteria in terms of the Euler characteristic of the nerve complex associated to the random covering.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.